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Resum (CAT)
Descrivim un dels únics casos de la Conjectura de Birch i Swinnertor-Dyer que ha

estat demostrat, l’anomenat teorema de Coates–Wiles. Sigui K un cos quadràtic

imaginari amb anell d’enters O principal i sigui E una corba el.ĺıptica definida

sobre K amb multiplicació complexa per O. El teorema de Coates–Wiles afirma

que si la sèrie L associada a E/K no s’anul.la en 1, aleshores el conjunt de punts

K -racionals de E és finit. La prova que explicarem, donada per Karl Rubin, utilitza

la teoria de sistemes d’Euler.

Abstract (ENG)
We describe one of the few cases of the Birch and Swinnerton-Dyer Conjecture

that has been already proved, the so called Coates–Wiles Theorem. Let K be an

imaginary quadratic field with ring of integers O and class number 1 and let E be an

elliptic curve defined over K with complex multiplication by O. The Coates–Wiles

Theorem states that if the L-series attached to E/K does not vanish at 1, then

the set of K -rational points of E is finite. We explain a proof given by Karl Rubin,

which uses the theory of Euler systems.
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The Coates–Wiles Theorem

1. Introduction

An elliptic curve E defined over a field F is a algebraic projective nonsingular curve of genus one with
a distinguished F -rational point O. The Riemann–Roch Theorem shows that the set of a�ne F -rational
points of E can be identified with the locus of solutions in A2(F ) of a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (1)

with coe�cients ai in F . Then, O is the point at infinity. We will denote by E (F ) the set of points P =
(x , y) with x , y 2 F that satisfy (1) together with the point O.

Remarkably, E (F ) can be endowed with a natural group structure. It is given by the Chord-Tangent
Method. Given two points P ,Q 2 E (F ), consider the point R of intersection of the line passing through P
and Q with E (F ). Then, define P + Q to be the intersection of the line through R and O with E (F ).

The endomorphisms of E are the morphisms � : E ! E of algebraic curves that respect the group
structure of E . The set End(E ) of endomorphisms of E is a ring where the operations are addition and
composition. Some examples of endomorphisms are the maps multiplication-by-m for some integer m, which
are naturally defined by adding a point m times using the Chord-Tangent Method. For some curves these
are all the possible endomorphisms. For others, End(E ) can have more elements and in such a case we say
that E has complex multiplication: the ring End(E ) can be either an order in an imaginary quadratic field
or a quaternion algebra, and this last option is not possible if F has characteristic 0. See [4, Chap. 2] for an
outline of the main theorem of elliptic curves with complex multiplication over a field of characteristic 0.

From now on assume that F is a number field with ring of integers OF . It is natural to ask about the
size of E (F ) and it turns out that we can use the group structure of E (F ) to say something about it. A
very important example of that is the Mordell–Weil Theorem which states that E (F ) is a finitely generated
group, i.e. E (F ) ⇠= Zr

� T where r � 0 is an integer and T is a finite group. We call r = rE the rank
of E , a mysterious invariant that has been object of extensive study.

Based on computer calculations, a conjectural answer to find rE was given by Birch and Swinnerton-
Dyer in 1965, the so called BSD Conjecture. It connects the algebraic nature of rE with an analytic object
attached to E , the L-series. In order to define the latter suppose that every ai lies in OF . Then, the L-series
attached to E is defined by an infinite product over the prime ideals of OF

L(E/F , s) =
Y

p

1

Lp(E/F , Np�s)
,

where Lp(E/F ,T ) is a polynomial of degree  2 and it is called the local factor at p. To define it,
consider a minimal Weierstrass equation of E (see [5, Chap. VII, §1]) and reduce it modulo p. It was
proven by Hasse that whenever the reduced equation is an elliptic curve over the field FNp, which we
will denote by Ẽ (FNp), we have #Ẽ (FNp) = Np � ap + 1, where �2

p
Np  ap  2

p
Np. In that

case, we define Lp(E/F ,T ) = (1 � apT + NpT 2). When the reduced curve is not smooth the definition

for Lp(E/F ,T ) depends on the structure of the group of nonsingular points of Ẽ (FNp) (see [5, App. C,
§16]). Using the estimate of ap it is not hard to see that the Euler product converges on the right half
plane {s 2 C : Re(s) > 3/2}. Birch and Swinnerton-Dyer conjectured the following.

Conjecture 1.1 (BSD Conjecture). The series L(E/F , s) admits an analytic continuation to the entire
complex plane. Moreover rE = ords=1 L(E/F , s).
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At this point it is worth mentioning the local global principle. The definition of the L-series attached
to E has information of the curve E defined over the residue fields FNp, which we can call local information,
and the BSD Conjecture states that it is possible to deduce results of E over the global field F from it.

For the case where F = Q the work of Wiles et al. on the Shimura–Tanyiama–Weil Conjecture implies
that L(E/Q, s) has analytic continuation. The analytic continuation for the particular case where E has
complex multiplication is known since the work of Deuring, who gave an expression of L(E/F , s) in terms of
the so called Hecke L-series and Hecke who proved the analytic continuation of the latter. In this project we
outline the proof of the following particular case of the BSD Conjecture. Let K be an imaginary quadratic
field with ring of integers O and class number 1.

Theorem 1.2 (Coates–Wiles). Suppose E is defined over K and it has complex multiplication by O. If
L(E/K , 1) 6= 0, then E (K ) is finite.

We will expose a proof of this theorem given by Rubin in [1]. As we said, the analytic continuation of
the L-series for our particular case was already known at this time so we will focus on proving that E (K )
is a finite group. Our exposition is organized in the following manner.

Section 2 provides an expression of the Selmer group of certain endomorphisms which will allow us
to determine when they are trivial. Section 3 covers the theory of the Euler system of elliptic units. We
introduce this system and explain how it is used to bound certain ideal class groups. Section 4 explains
the connection between elliptic units and the L-series of E and combines the previous work to prove the
theorem. It shows that if L(E/K , 1) 6= 0, we can produce a concrete system of elliptic units. Applying the
theory of Euler systems to it we will be able to give a sharp bound of the ideal class group studied in
Section 3. This is precisely one of the conditions to show that certain Selmer group is trivial and with some
additional work we will be able to conclude the proof.

2. The Selmer group

Let K be an imaginary quadratic field with ring of integers O. Assume here and from now on that K has
class number 1. Let p be a prime ideal in O above a rational prime p > 3 that splits in K and let ⇡ 2 K be
such that (⇡) = p. Let E be an elliptic curve defined over K with complex multiplication by O. Fix K̄ an
algebraic closure of K , let End(E ) be the ring of endomorphisms of E defined over K̄ and fix the unique
isomorphism [·] : O

⇠
�! End(E ) such that [↵]⇤! = ↵! for every ↵ 2 O and ! any invariant di↵erential

of E . When it is clear from the context, we will write ↵ for the endomorphism [↵]. The goal of this section
is to define the ⇡-Selmer group of E over K , that will be denoted by S⇡(E/K ) and characterize when it is
trivial.

We begin by recalling the definition of S↵(E/F ) for a number field F � K and ↵ 2 O and explaining
why it will be relevant to prove the Coates–Wiles Theorem. First suppose that F is any field containing K
and view E as an elliptic curve defined over F . Let F̄ be an algebraic closure of F . If ↵ 2 O, denote
by E [↵] the kernel of [↵] : E (F̄ ) ! E (F̄ ) and if L is an extension of F contained in F̄ , let E [↵](L) be
the set of points of E [↵] defined over L. Let GF = Gal(F̄/F ). Consider the following exact sequence of
GF -modules

0 ! E [↵] ! E (F̄ )
↵
�! E (F̄ ) ! 0.
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The Coates–Wiles Theorem

Taking GF -cohomology leads to a long exact sequence, where we only write the first terms

0 ! E [↵](F ) ! E (F )
↵
�! E (F )

�
�! H1(F ,E [↵]) ! H1(F ,E (F̄ ))

↵
�! H1(F ,E (F̄ )),

where we are considering continuous morphisms and � is the connecting morphism

� : E (F ) ! H1(F ,E [↵]), P 7! [� 7! Q�
� Q] for some Q satisfying ↵Q = P .

From this sequence we can obtain the following short exact sequence

0 ! E (F )/↵E (F )
�
�! H1(F ,E [↵]) ! H1(F ,E (F̄ ))[↵] ! 0

(note that H1(F ,E (F̄ )) is an End(E )-module and H1(F ,E (F̄ ))[↵] denotes the ↵-torsion of it).

We will study E (F )/↵E (F ) by studying its image by � in H1(F ,E [↵]) for F a number field containing K .
As we will see, this is easier if F is a local field containing K . This motivates the following: suppose that
F is a number field containing K , fix a prime Q (finite or infinite) of F and regard E as defined over the
completion of F at Q, that from now on will be denoted by FQ (we will use similar notations to denote
completions). Viewing E as an elliptic curve defined over FFQ and repeating the process described above
we obtain the short exact sequence

0 ! E (FQ)/↵E (FQ)
�
�! H1(FQ,E [↵]) ! H1(FQ,E )[↵] ! 0. (2)

Using that F ⇢ FQ, and GF � GFQ , we have the natural map E (F )/↵E (F ) ! E (FQ)/↵E (FQ) and the

restriction maps H1(F ,E [↵])
resQ
��! H1(FQ,E [↵]), H1(F ,E (F ))

resQ
��! H1(FQ,E (FQ)). We can consider

these maps for every prime Q of F to obtain the following commutative diagram

0 E (F )/↵E (F ) H1(F ,E [↵]) H1(F ,E )[↵] 0

0
Q

Q E (FQ)/↵E (FQ)
Q

QH1(FQ,E [↵])
Q

QH1(FQ,E )[↵] 0.

�

�

Instead of studying the image of E (F )/↵E (F ) by �, we will consider a larger group that is easier to
characterize.

Definition 2.1. Let F be a number field containing K and let ↵ 2 O. Define the ↵-Selmer group of E/F as

S↵(E/F ) = {c 2 H1(F ,E [↵]) : resQ(c) 2 �(E (FQ)/↵E (FQ)) for all Q}.

Remark 2.2. One can think of the Selmer group S↵(E/F ) as the smallest group defined by natural local
conditions containing �(E (F )/↵E (F )).

The following proposition explains the relevance of the Selmer group of an elliptic curve.

Proposition 2.3. Let ↵ 2 O. Suppose S↵(E/F ) = 0, then E (F ) is finite.

Proof. By definition of S↵(E/F ), we have the injection E (F )/↵E (F ) ,�! S↵(E/F ). Thus, E (F )/↵E (F ) = 0.
Now the result follows from the Mordell–Weil Theorem (see [5, Ch. VIII, Thm. 4.1] for the statement and
proof of Mordell–Weil Theorem).
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Here and from now on let ↵ = ⇡n. We proceed to study S↵(E/F ). The main point in the following
calculations is noting that the local conditions that appear in the definition of the Selmer group behave
di↵erently depending on whether the prime ideal Q of F divides ↵ or not. We begin studying the primes Q
such that Q - ↵.

Definition 2.4. Define the enlarged Selmer group of ↵ as

S 0
↵(E/F ) = {c 2 H1(F ,E [↵]) : resQ(c) 2 �(E (FQ)/↵E (FQ)) for all Q - ↵}.

Clearly, S↵(E/F ) ⇢ S 0
↵(E/F ).

Theorem 2.5. Suppose E is defined over K and let Kn = K (E [pn]). Then,

S 0
↵(E/K ) ⇠= Hom(Mn/Kn,E [p

n])Gal(Kn/K),

where Mn is the maximal abelian extension of Kn unramified outside primes above p.

Proof. This is done in two steps. First we compute

S 0
↵(E/Kn

) = {c 2 Hom(GKn
,E [pn]) : resQ(c) 2 �(E (Kn,Q)/↵E (Kn,Q) for all Q | ↵},

where we used that GKn
fixes E [pn] and Kn,Q denotes the completion of Kn at the prime Q. Since E has

good reduction at Q (see [1, Thm. 5.7]), the inertia subgroup IQ ⇢ GKn,Q acts trivially on E [pm] for every
m � 1 (see [1, Coroll. 3.17]). Therefore, the connecting morphism factors trough

E (Kn,Q)/↵E (Kn,Q) �! Hom(GKn,Q/IQ,E [p
n]). (3)

By (2) this map is injective and it can be seen that it is an isomorphism by showing that both groups
are isomorphic to O/pn, see [1, Lem. 6.4]. From there it follows that S 0

↵(E/Kn
) ⇠= Hom(Mn/Kn,E [pn]) by

class field theory. The second step of the proof consists on applying [1, Lem. 6.2] to see that the inflation
restriction exact sequence induces the isomorphism S 0

↵(E/K ) ' S 0
↵(E/Kn

)Gal(Kn/K).

We are left with studying the local condition at p. Since p is coprime to f, E has good reduction at p.
Since ordp(p)  2 < p � 1, the logarithm induces an isomorphism logE : E1(Kp)

⇠
�! pOp, where E1(Kp)

is the set of points of E (Kp) that reduce to 0 modulo p. Moreover, since the reduction of E at p has
no p-torsion, E (Kp) = E1(Kp) ⇥ Ẽ (k) and logE can be extended to a map logE : E (Kp) ! Op (see [1,
Lem. 6.6]). By [1, Coroll. 5.20 (iv)], Kn/K is totally ramified at p. For every n � 1, denote Kn,p the
completion of K at the unique prime above p.

Definition 2.6. Define the following Kummer pairing

h , i⇡n : E (Kp)⇥ K⇥
n,p ! E [pn], P , x 7! hP , xi⇡n = Q [x ,Kn,p] � Q,

where Q 2 E (K̄p) is such that ⇡nQ = P and [·,Kn,p] is the local Artin map.

Definition 2.7. For every n � 1, define �n : K
⇥
n,p ! E [pn] by �n(x) = hR , xi⇡n .

Lemma 2.8 ([1, Lem. 6.8]). For every n, the map �n is characterized by the fact that if P 2 E (Kp) and
x 2 K⇥

n,p, we have hP , xi⇡n = (⇡�1 logE (P))�n(x). Moreover, if On,p is the ring of integers of Kn,p, we
have �n(O

⇥
n,p) = E [pn].
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The Coates–Wiles Theorem

The previous lemma shows that �n is essentially the connecting morphism given in (2). Combining
this lemma with Theorem 2.5 and class field theory yields the following description of S⇡n(E/K ). For every

number field F let A⇥
F
denote the idele group of F .

Theorem 2.9 ([1, Thm. 6.9]). Let Kn = K (E [pn]) with idele group A⇥
Kn
. Define

Wn = K⇥
n

Y

v |1

K⇥
n,v

Y

v -p1
O

⇥
n,v · ker �n.

Then, S⇡n(E/K ) ⇠= Hom(A⇥
Kn
/Wn,E [pn])Gal(Kn/K).

Let � = Gal(K (E [p])/K ). Then, � acts naturally on the O/p-vector space E [p]. Let �E : � ! F⇥
p

be the character of this representation. Let A be the p-part of the ideal class group of K1. Note that�
acts on A in a natural way. For every character � : � ! F⇥

p consider the composition, also denoted by �,
� : � ! Fp ,�! Z⇥

p , where the last morphism is given by Hensel’s Lemma. For a given Z[�]-module M, let

M(p) = M ⌦Z Zp, which is a Zp[�]-module and let M� be the �-isotypical component of M(p). Another
application of class field theory gives the following result.

Corollary 2.10. Consider the same notation as above and suppose that p splits in K. Then, S⇡(E/K ) = 0

if and only if A�E = 0 and �1(O
⇥
K1
) 6= 0.

This characterizes when S⇡(E/K ) = 0 which is the key point to prove the Coates–Wiles Theorem since,
as we explained, S⇡(E/K ) = 0 implies that E (K ) is finite.

3. The Euler system of elliptic units

Let E be an elliptic curve defined over K with complex multiplication by O. Let  be the Hecke character
attached to E with conductor f (see [4, Chap. 2, §9]), viewed as a character on ideals. Choose a prime p
of K not dividing 6f, let p be the rational prime below it and suppose that p splits in K . Fix an ideal a
of O coprime to 6pf. Let R be the set of square free ideals of O coprime to 6fpa. Finally, for n � 0 denote
by Kn = K (E [pn]), if r 2 R denote by Kn(r) = K (E [pnr]) and let Gr = Gal(Kn(r)/Kn). In this section we
introduce the Euler system of elliptic units and we explain how it can be used to bound the size of A�E

defined above. We will work with the following definition of Euler system.

Definition 3.1. An Euler system is a set of global units {⌘(n, r) 2 Kn(r)⇥ | n � 1 and r 2 R} satisfying:

(i) if rq 2 R, where q is a prime ideal of O, NKn(rq)/Kn(r)⌘(n, rq) = ⌘(n, r)(1�Frob�1
q ), and

(ii) if r 2 R and n � 1, NKn+1(r)/Kn(r)⌘(n + 1, r) = ⌘(n, r).

We now construct the so called Euler system of elliptic units. For that we need to introduce the following
rational functions. Fix here and from now on an analytic isomorphism ⇠ : C/L ⇠

�! E (C) where L = ⌦O
and⌦ 2 C.
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Definition 3.2. Choose a Weierstrass equation for E and denote by �(E ) its discriminant. Let � 2 O be
a generator of the ideal a. Define

⇥E ,a = ��12�(E )Na�1
Y

P2E [a]�O

(x � x(P))�6.

Suppose that E is defined over K . Let S 2 E be an O-generator of E [f]. Define

⇤E ,a =
Y

�2Gal(K(f)/K)

⇥E ,a � ⌧S� ,

where ⌧S�(P) = P+S� for every P 2 E and K (f) is the ray class field of K modulo f. Define ⇥L,a = ⇥E ,a�⇠
and⇤ L,a = ⇤E ,a � ⇠.

The system of elliptic units is obtained by evaluating⇤ L,a at certain torsion points of E in the follow-
ing way.

Definition 3.3. Given n � 0 and an integral ideal r 2 R define ⌘(a)n (r) = ⇤E ,a(⇠( (pnr)�1⌦)). The

set {⌘(a)n (r)} for n � 1 and r 2 R is the set of elliptic units.

Proposition 3.4 ([1, Prop. 8.2]). The set {⌘(a)n (r)} for n � 1 and r 2 R is an Euler system.

Here and for the rest of this section we write ⌘(n, r) := ⌘(a)n (r). Fix M a power of p and n � 1. We now
explain how to construct a principal ideal of Kn starting from the unit ⌘(n, r) 2 Kn(r). This construction
will be done only for r in the following subgroup of R.

Definition 3.5. Define Rn,M to be the subset of R with elements r 2 R such that every prime q | r
satisfies:

(i) q splits completely in Kn/K , and

(ii) M | (Nq� 1).

In order to do the construction we will use Kolyvagin’s derivative operator. For every q 2 R prime ideal,
fix �q 2 Gq a generator of the cyclic group Gq.

Definition 3.6. If q 2 R prime, define Dq =
PNq�2

i=1 i�iq 2 Z[Gq]. For an arbitrary ideal r 2 R, define
Dr :=

Q
q|rDq 2 Z[Gr].

Proposition 3.7. Let n � 1, r 2 Rn,M and � 2 Gr. Then, ⌘(n, r)(��1)Dr 2 (Kn(r)⇥)M . Moreover, there
is a natural choice of Mth root of unity, that we will denote by (⌘(n, r)(��1)Dr)1/M .

Proof. See [1, Prop. 8.4]. Note that both Kn and Kn(r) may contain Mth roots of unity. This is the reason
why we need [1, Prop. 8.4 (i)] to specify a choice of an Mth root of ⌘(n, r)(��1)Dr . For that, the so called
universal Euler system is used (see [2, Chap. IV, §2] for more details).

Definition 3.8. Let n � 1, r 2 Rn,M . Define the 1-cocycle c 2 H1(Gr,Kn(r)⇥) as

Gr ! Kn(r)
⇥, c(�) = (⌘(n, r)(��1)Dr)1/M .
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By Hilbert’s Theorem 90 we have that H1(Gr,Kn(r)) = 0, hence there exists � 2 Kn(r)⇥ such that
c(�) = ���1. Raising this equality to the Mth power yields

z =
⌘(xn,r)Dr

�M
2 K⇥

n .

The element � is well defined up to multiplication by an element of Kn. Hence, z is well defined in K⇥
n /(K⇥

n )M .

Definition 3.9. With the same notation used in the previous definition, define

n,M(r) =
⌘(xn,r)Dr

�M
2 K⇥

n /(K⇥
n )M .

Fix n � 1. In order to simplify the notation denote F = Kn and let OF be its ring of integers. We
proceed to write the factorization of the ideal generated by n,M(r) 2 F modulo Mth powers in terms
of n,M(s) for ideals s | r.

Definition 3.10. Denote the group of ideals of F additively as I =
L

Q ZQ, where the sum is over all
prime ideals Q of F . If q is a prime ideal of K , we define Iq =

L
Q|q ZQ. For a given y 2 F , denote

by (y) the principal ideal generated by y , (y)q its projection to Iq, [y ] 2 I/MI the reduction modulo M
and [y ]q the respective projection.

Fix q 2 Rn,M a prime of K . We will construct a function, �q, that will allow us to relate [n,M(r)]q
with the element n,M(rq�1). We start by defining a map

�0q : (OF/qOF )
⇥
! Iq/MIq

that after a small modification will become the desired map. Note that q splits completely in F . Therefore,
we have

(OF/qOF )
⇥ ⇠=

Y

Q|q

(OF/Q)⇥,

where each of the terms in the right hand side is a cyclic group of order Nq� 1. On the other hand

Iq/MIq
⇠= �Q|q(Z/MZ).

Since M | (Nq�1), in order to define a map (OF/qOF )⇥ ! Iq/MIq it is enough to choose a generator of
the cyclic group (OF/Q)⇥ for every Q | q and map it to 1 2 Z/MZ. Now we explain how we choose these
generators. For Q dividing q choose a prime Q0 of F (q) above it and consider ⇡Q a local parameter at the
prime Q0. Since the local field extension F (q)Q0/FQ is totally tamely ramified we have that the map

Gal(F (q)/F ) ! OF (q),Q0
⇥
! (OF/Q)⇥, � 7! ⇡(1��)Q 7! [⇡(1��)Q ] (4)

is a group isomorphism ([3, Chap. IV, Prop. 5]).

Definition 3.11. For Q as above, define �Q 2 (OF/Q)⇥ to be the image of the fixed generator �q 2 Gq

by the map in (4). It is a generator of (OF/Q)⇥.
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Definition 3.12. Define a map �0q : (OF/q)⇥ ! Iq/MIq as follows. Given ↵ 2 (OF/q)⇥ and Q | q, let

aQ(↵) 2 Z be such that ↵ ⌘ �aQ(↵)
Q mod Q. Then define

�0q(↵) =
X

Q|q

(aQ(↵) mod M)Q.

Finally, note that �q factors trough (OF/q)⇥/((OF/q)⇥)M . Define �q = �0q � jq, where jq is the natural

map { 2 F⇥/(F⇥)M : []q = 0} ! (OF/q)⇥/((OF/q)⇥)M . It is plain to see that �q is an isomorphism.

Theorem 3.13 (Factorization Theorem; [1, Prop. 8.10]). Consider n,M(r) and q a prime ideal of K. Then,

(i) if q - r, [n,M(r)]q = 0, and

(ii) if q | r: [n,M(r)]q = �q(n,M(rq�1)).

Here and from now on suppose that F = K1, i.e. n = 1. Note that ⌘(1,O) 2 O
⇥
F

and denote by µF

the subgroup of roots of unity of O⇥
F
. Let C be the Z[�]-submodule of O⇥

F
generated by ⌘(1,O) and µF .

The Factorization Theorem gives the factorization of principal ideals of the form (1,M(r)) modulo M-th
powers. If M is large enough, these factorizations give relations between the classes of the prime ideals
generating A. This allows to give the following bound of the �-isotypical component of A for every irreducible
representation � of �.

Theorem 3.14 ([1, Thm. 9.5]). For every irreducible Zp-representation of � we have #A�  #(O⇥
F
/C)�.

Corollary 3.15. Consider the same notation as above. Suppose that ⌘(1,O)� 62µ�
F
((O⇥

F
)�)p. Then, A� = 0.

4. Complex L-function of E and proof of Coates–
Wiles Theorem

Let E be an elliptic curve defined over K with complex multiplication by O. Let  be the Hecke character
attached to E , viewed as a character on ideals, with conductor f and denote by  ̄ its conjugate. Let
L(E/K , s) be the complex L-function attached to E viewed as an elliptic curve over K . For a given ideal

m such that f | m and k � 1 define Lm( k , s) =
P
 k(b)/Nbs , where the sum is restricted to the ideals b

coprime to m. We similarly define Lm( ̄k , s). The following theorem is due to Deuring.

Theorem 4.1 (Deuring; [4, Thm. 10.5 (a)]). We have L(E/K , s) = Lf( , s)Lf( ̄, s).

Now we proceed to relate elliptic units with Lf( ̄k , s) for k � 1.

Theorem 4.2. For every k � 1,

dk

dzk
log⇤ L,a(z)|z=0 = 12(�1)k(k � 1)!f k(Na�  (a)k)⌦�kLf( ̄

k , k).
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Proof. This proof is done in several steps. First it is possible to relate the kth derivative of log⇥ L,a(z) with
respect to z with the Eisenstein series Ek(z , L) = lims!k

P
!2L0(z̄ + !̄)k/|z + !|2s , where lims!k denotes

evaluation at the analytic continuation. This is done in [1, Thm. 7.13]. Then, [1, Prop. 7.15] shows how to
relate Ek(z , L) with partial sums of Lf( ̄, k). Finally, since log⇤ L,a(z) is a sum of translates of log⇥ L,a(z)
(see Definition 3.2), it is possible to add all partial sums of Lf( ̄, k) to obtain the desired theorem (see [1,
Thm. 7.17]).

Let p be a prime of K above p where E has good reduction and p - 6f. Fix a Weierstrass model
for E with coordinate functions x , y that has good reduction at p and fix a an ideal coprime to 6fp. Let
Ê be the formal group attached to E and let x(Z ) 2 z�2

Op[[Z ]], y(Z ) 2 z�3
Op[[Z ]] be the power series

corresponding to x and y as in [5, Chap. IV, §1]. Let �
Ê
(Z ) 2 Z + Z 2Kp[[Z ]] be the logarithm map of

the formal group Ê (see [5, Chap. IV, §1]) and consider the operator D = 1
�0
E
(Z)

d

dZ
. Denote by K (E ) the

function field of E and by identifying the coordinates (x , y) with (x(Z ), y(Z )) and with (}(z),}0(z)/2),
where } is the Weierstrass }-function. We have the following commutative diagram (see [1, Prop. 7.20]).

K (}(z),}0(z)) K (E ) K (x(Z ), y(Z )) Kp((Z ))

K (}(z),}0(z)) K (E ) K (x(Z ), y(Z )) Kp((Z )).

d

dz
D D

(5)

Theorem 4.3. Denote by ⇤p,a(Z ) 2 Kp((Z )) the image of ⇤E ,a 2 K ((E )) by the map given in (5). Then,
⇤p,a 2 Op[[Z ]]⇥ and for every k � 1

Dk log⇤ p,a(Z )|Z=0 = 12(�1)k�1(k � 1)!f k(Na�  (a)k)⌦�kLf( ̄
k , 1).

Proof. The first statement is proven in [1, Thm. 7.22] while the second one follows from the fact that (5)
is commutative and Theorem 4.2.

Suppose here and from now on that p > 7 and p splits in K . Then, we can suppose that Na 6=  (a)
modulo p (for every p such that p > 7 such an a exists by [1, Lem. 10.2]). Let F = K1 = K (E [p]), which
is totally ramified at p and let P be the unique prime above p. Consider ⌘(1,O) = ⇤L,a( (p)�1⌦) =
⇤p,a(z) 2 O

⇥
F
. Let � : O⇥

FP
! (1+POFP)/(1+P2

OFP) be the natural projection, which is �-equivariant.

Proposition 4.4. Lf(E , 1)/⌦ is integral at p. Moreover, �(⌘(1,O)) = 1 if and only if L( ̄, 1)/⌦ ⌘ 0
mod p. In particular, L( ̄, 1)/⌦ 6⌘ 0 mod p implies that ⌘(1,O)�E 62 ((O⇥

F ,P)
�E )p.

Proof. Let P = ⇠( (p)�1⌦) = (x , y) and z = �x/y . It follows from [1, Lem. 7.3] that z = �y/x 2 OF ,P

has valuation 1 at the prime P. Theorem 4.3 allows to write ⌘(1,O) = ⇤p,a(z) as a power series on z . The
first terms are

⇤p,a(z) = ⇤p,a(0) +⇤ a,a(0)12f (Na�  (a))
Lf( ̄, 1)

⌦
z + O(z2). (6)

Since⇤ p,a(Z ) 2 Op[[Z ]]⇥ we have that⇤ p,a(0) 2 O
⇥
p . Since a is chosen so that Na 6=  (a) modulo p we

have⇤ p,a(0)12f (Na�  (a)) 2 O
⇥
p which shows that Lf( ̄, 1)/⌦ is integral at p.
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To prove the second part of the statement we need to compute the projection of⇤ p,a(z) in (1 +
POF ,P)/(1 +P2

OF ,P). Since ordP(z) = 1, (6) reduces to

⌘(1,O) ⌘ ⇤p,a(0)

✓
1 + 12f (Na�  (a))

Lf( ̄, 1)

⌦
z

◆
mod P2.

Using again that⇤ p,a(0) 2 O
⇥
p and that p is totally ramified in F it follows that �(⇤p,a(0)) = 1. Hence,

�(⌘(1,O)) = 1 + 12f (Na �  (a))L( ̄,1)⌦ z and the second result follows. Finally, the study of the formal

group Ê gives a �-equivariant isomorphism (1 +POFP)/(1 +P2
OFP) ' E [p] (see [1, Lem. 10.4]). From

there we see that �(⌘(1,O)�E ) = �(⌘(1,O))�E = �(⌘(1,O)) 6= 0. Thus ⌘(1,O)�E 62 ((O⇥
F ,P)

�E )p, since

otherwise its image by � would be 1 (because (1 +POFP)/(1 +P2
OFP) is killed by NP = Np | p).

Theorem 4.5. Suppose that L( ̄, 1)/⌦ 6⌘ 0 mod p and that TrK/Q  (p) 6= 1. Let �1 be as in Defini-

tion 2.7. Then, �1(O
⇥
F
) 6= 0.

Proof. By Lemma 2.8 it is enough to see that (O⇥
F
)�E ⇣ (O⇥

F ,P)
�E . For that we make the following

observation. Using the p-adic logarithm we see that (O⇥
F ,P ⌦Zp

Qp)�E is 1-dimensional (recall that �E is

1-dimensional). Moreover, since TrK/Q  (p) 6= 1 it can be seen that µp 6⇢O
⇥
F ,P (see [1, Lem. 10.9 (i)]).

Therefore, (O⇥
F ,P)

�E is free of rank 1 over Zp. Since ⌘(1,O)�E 62 ((O⇥
F ,P)

�E )p by Proposition 4.4,

⌘(1,O)�E 2 O
⇥
F

is a generator of (OF ,P)�E giving the desired surjectivity.

We can finally give the proof of the Coates–Wiles Theorem.

Theorem 4.6 (Coates–Wiles). Suppose that L(E/K , 1) 6= 0. Then E (K ) is finite.

Proof. Theorem 4.1 shows that Lf( ̄, 1) 6= 0. By the Chebotarev Theorem there are infinite primes p of K
above a rational prime p such that p splits in K and TrK/Q  (p) 6= 1. We can choose one such that p > 7,
p coprime to 6f and Lf( ̄, 1)/⌦ is a unit at p.

Therefore we can apply the previous results of this section to p. Since µp 62 FP by [1, Lem. 10.9 (i)],
by Proposition 4.4 and Corollary 3.15, A�E = 0. In addition, Theorem 4.5 shows that �1(O

⇥
F
) 6= 0. The

conditions of Corollary 2.10 are satisfied so we can a�rm S⇡(E/K ) = 0, where ⇡ 2 O such that p = ⇡O.
Therefore E (K )/pE (K ) = 0, by the Mordell–Weil Theorem E (K ) has to be finite (see Proposition 2.3)
and we are done.
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